ESTUDIO DE LA ACTIVIDAD ALGUICIDA DE LA BACTERIA Cytophaga sp. ASOCIADA AL DINOFLAGELADO TÓXICO Alexandrium catenella

SOLEDAD P. UGARTE¹, ADELHEIT B. SCHNEIDER¹, ALICIA I. SCIARAFFIA¹, DRA. ANA M. AMARO²

RESUMEN

Alexandrium catenella ACCO1, es una microalga tóxica causante de los florocimientos algales nocivos (FAN) en el sur de Chile. Asociada a ella, se han aislado e identificado, las bacterias, Cytophaga sp. AMA-01. Pseudoalteromonas sp. AMA-02. y Ruegeria atlantica AMA-03. El género Cytophaga ha sido previamente aislado de muestras de agua obtenidas al término de los florocimientos algales de diatomeas, rafidofitos y dinoflagelados lo cual ha llevado a algunos autores a sugerir que posee una propiedad alguicida contra microalgas tóxicas. En este estudio se determinó la actividad cetolfítica de Cytophaga s.p AMA-01, observando el efecto del sobrenadante del cultivo bacteriano crecido hasta fase estacionaria, sobre un cultivo de Alexandrium catenella. Las proteínas del sobrenadante, aisladas por precipitación con sulfato de amonio, presentaron una actividad cetolfítica de un 90% a las 48 horas. Las actividades enzimáticas encontradas en el sobrenadante fueron: Fosfatasa alcalina, Esterasa lipasa, Lipasa, Leucina ariilamidasa, Fosfatasa ácida y Naftol-AS-BI-fosfohidrolasa.

Palabras Claves: alexandrium catenella, cytophaga, actividad bacteriana alguicida,

INTRODUCCIÓN

Las microalgas son parte integral del ecosistema marino, sin embargo, bajo ciertas condiciones ambientales, 60 especies causan una proliferación explosiva nociva, denominada “Floraciones Algas Nocivas” (FAN), liberando toxinas al mar. Las FAN son conocidas comúnmente como Marea Roja por el cambio de coloración del agua. En Chile, las FAN serían causadas por los dinoflagelados tóxicos Alexandrium catenella y Dinophysis acuta y, por otro lado algunas diatomeas del género Pseudonitzschia; las que generan toxinas marinas, (toxina paralizante o PSP, diarreica o DSP y amnésica o ASP, respectivamente). Investigaciones recientes muestran que existen bacterias en simbiosis con dinoflagelados tóxicos, siendo parte integral de su ambiente físico. El rol de ellas en la dinámica de las FAN no está claramente establecido; sin embargo, se señala que podrían ser importantes reguladores de su crecimiento y toxicidad. (1)(2)(3) Algunos autores postulan que algunas bacterias presentarían un efecto alguicida directo, para el cual es necesario un contacto físico(1), otros estudios revelan evidencias suficientes para postular que el efecto alguicida sería indirecto, a través de la liberación de sustancias capaces de desintegrar la microalga(2), siendo esto último lo más aceptado. El rol bacteriano en los niveles de toxicidad de las microalgas es complejo ya que se ha demostrado que ambos organismos son capaces de sintetizar toxinas de forma independiente(4).

Alexandrium catenella se asocia a las FAN en Chile desde 1972. Asociada a ella, se han aislado e identificado, en el Laboratorio de Toxinas Marinas, la bacteria, Cytophaga sp. AMA-01(5). El rol que ella desempeña no es aún claro. Estudios demuestran que a medida que el cultivo de Alexandrium catenella llega a fase estacionaria, hay un aumento en el conteo y ataque de las bacterias sobre el dinoflagelado, desconociéndose el mecanismo que gatilla el ataque (4). Se postula que las bacterias requieren cierta densidad numérica o “quorum sensing” antes de que el factor alguicida se exprese. (5). Si bien se describe un efecto alguicida por parte Cytophaga sp. sobre la microalga, se desconoce aún cómo es capaz de matar al dinoflagelado.

El objetivo de nuestra investigación es determinar y analizar las características de la actividad alguicida de la bacteria Cytophaga sp. sobre cultivos del dinoflagelado tóxico Alexandrium catenella y sobre cultivos de un dinoflagelado no tóxico.

¹ Estudiantes 4º año Medicina, Facultad de Medicina, Universidad de Chile.
² Laboratorio de Toxinas Marinas, Programa de Fisiología y Biofísica, Facultad de Medicina.
MATERIALES Y MÉTODOS

Cultivo de las microalgas: Dos algas fueron utilizadas en el presente estudio: Alexandrium catenella cepa ACC01, aislada por el Laboratorio del Instituto de Fomento Pesquero, IFOP, Puerto Montt, Chile; de una muestra colectada en abril de 1994 desde los mares de la región de Aysén, Chile (45° 32' S, 73° 14' O; fotografía 1). La cepa fue cultivada en F/2, a 12°C, bajo ciclos de 16 horas luz y 8 horas oscuridad. El dinoflagelado no tóxico Heterocapsa sp. SGM01 obtenido desde los estanques del Centro de Cultivo de Abalón de la Universidad Católica del Norte, sede Coquimbo, fue cultivada y mantenida en laboratorio bajo las mismas condiciones que A. catenella Para determinar las fases de latencia, explosiva y estacionaria de ambas algas se utilizó una curva de crecimiento realizada en el Laboratorio de Toxinas Marinas (2002), que mide la densidad celular por conteo directo de la población celular en una cámara de Sedgewick Rafter S50 (Graticules Ltd., Tonbridge, England).

Cultivo bacteriano: Cytophaga sp. fue aislada en el Laboratorio de Toxinas Marinas desde un cultivo de Alexandrium catenella ACC01. Para su crecimiento se empleó Agar Marino® como medio sólido, y F/2 suplementado con 0,25% de bactopectona, como medio líquido. Estos últimos fueron agitados a 25°C en un incubador termoregulado Environ Shaker Orbit a 120 r.p.m. Las fases de latencia, explosiva y estacionaria de Cytophaga sp. cultivada en medio líquido, se obtuvieron por una curva de crecimiento bacteriano, midiendo el crecimiento celular, por el aumento en la Absorbancia a 620nm de las muestras del cultivo tomadas cada 1 hora, para lo que se utilizó un Espectrofotómetro 4049 LKB Blochroom Novaspec.

Determinación del Efecto Alguicida Indirecto. Para eliminar la bactopectona del medio de cultivo, el sobrenadante libre de células obtenido por centrifugación a 10.000 x g, por 10 minutos, fue dializado en una membrana semipermeable SnakeSkin® de 10 KDa, contra F/2, en una relación 1:10 con tres cambios de F/2, durante 24 horas, en frío y con agitación. El sobrenadante dializado se esterilizó por filtración en membranas de nitrocelulosa de 0,2 mm (Advantec MPS, Inc.). A este sobrenadante se le llamó Sobrenadante Filtrado Dializado (SFD). La actividad alguicida se midió enfrentando el SFD a cultivos de Alexandrium catenella ACC01 en crecimiento exponencial (20000 células/ml) bajo condiciones normales de incubación de microalgas y en una relación de volumen 1:1 (volumen SFD / volumen cultivo de A. catenella). La sobrevivencia de la microalgas se determinó por conteo directo en cámara de Sedgewick Rafter a las 24, 48 y 72 horas de incubación de las microalgas que sobrevivían en presencia del sobrenadante.

Determinación de proteínas: La concentración de éstas en el sobrenadante del cultivo de Cytophaga sp., se determinó mediante el Método del Ac. Bicinchonínico (BCA).

Detección de las actividades enzimáticas presentes en cultivos de Cytophaga sp.: Para el análisis de las endo- y exoenzimas presentes en el sobrenadante, se utilizó un kit comercial ApiZym (Biomerieux®) que corresponde a un micrométodo semicuantitativo, para detección rápida y simultánea de hasta 19 actividades enzimáticas.

Obtención de proteínas concentradas y sobrenadante desproteinizado: Para determinar si el factor alguicida del sobrenadante de Cytophaga sp es de tipo proteico, se realizó una precipitación de proteínas con sulfato de amonio al 85% de saturación (5,59gr cada 10ml de sobrenadante), obteniendo un pellet de proteínas concentradas y un sobrenadante desproteinizado.

Determinación del efecto alguicida de proteínas concentradas y sobrenadante desproteinizado: Se utilizó un cultivo de Alexandrium catenella en fase exponencial con concentración de 16000cel/ml, del cual fueron obtenidas las muestras para ser enfrentadas a: a) sobrenadante desproteinizado del cultivo bacteriano de Cytophaga sp. previamente dializados contra F/2 y filtrado (Experimental 1), b) proteínas concentradas previamente dializadas contra F/2 y filtradas (Experimental 2), c) F/2 (Control). La sobrevivencia de la microalgas se determinará por conteo directo en una cámara de Sedgewick Rafter a las 24, 48 y 72 horas de incubación de las microalgas que sobreviven en presencia del sobrenadante.

Patrones electroforéticos: Para analizar las proteínas presentes en los sobrenadantes del cultivo bacteriano de Cytophaga sp. se utilizó electroforesis unidimensional (Laemmli, 1970) en condiciones desnaturalizantes (SDS-PAGE), utilizando geles de poliacrilamida al 15% y proteínas concentradas liofilizadas previamente.

Especificidad del efecto alguicida: El mismo procedimiento realizado para determinar la actividad alguicida en A. catenella, se efectuó con el dinoflagelado Heterocapsa sp., para así determinar si el efecto alguicida de Cytophaga sp. es específico para A. catenella.

Estadística: Dado el tiempo limitado para realizar los experimentos, sólo se hicieron en duplicado, y esto sólo permitió realizar un análisis porcentual de sobrevivencia.

Fotografía 1. Microfotografía de Alexandrium catenella cepa ACC01, Microscopio de Luz Invertido (40x) (Laboratorio de Toxinas Marinas, Facultad de Medicina, Universidad de Chile, 2004)

Fotografía 2. kit ApiZym (Biomerieux®)

RESULTADOS

Efecto Alguicida Indirecto.

Actividad Alguicida SFD de Cytophaga sp en Cultivo de A. catenella. El Gráfico I muestra el efecto alguicida que ejerce el SFD de Cytophaga sp AMA-01, sobre las células de un cultivo en crecimiento exponencial de A. catenella ACC01. El control negativo F/2-Si, mostró crecimiento celular a las 24 y 48 horas. Se verifica la existencia de actividad alguicida presente en el SFD Cytophaga sp al disminuir la población de células de A. catenella expuesto a SFD por un periodo de 72 horas bajo las condiciones antes descritas, a la vez que es posible observar el crecimiento normal de la población control. Creo que para esto es bueno explicar aquí en una sola figura.
el efecto alguicida del sobrenadante total, del las proteínas del sobrenadante concentradas y del sobrenadante desproteinizado.

Caracterización del efecto alguicida *Cytophaga sp*

a) Determinación las actividades enzimáticas presentes en el sobrenadante del cultivo bacteriano (ApiZym).

El sobrenadante de *Cytophaga que* contenía 0,9280 mg/ml de proteínas, presentó las actividades enzimáticas señaladas en la Tabla 1. El SFD completo presenta actividad: Fosfatasa alcalina, Esterasa, Esterasa lipasa, Lipasa, Leucina arilamidasa, Fosfatasa ácida, Naftol AS-BI fosfohidrolasa. Las proteínas concentradas presentan las mismas actividades con mayor intensidad colorimétrica excepto lipasa que está ausente. En el SFD hervido durante 7 minutos persiste actividad fosfatasa alcalina, Esterasa lipasa, Fosfatasa ácida, Naftol AS BI fosfohidrolasa. Tras desproteinizar persisten en el sobrenadante tratado con sulfato de amonio las actividades fosfatasa alcalina, Esterasa lipasa, Naftol AS BI fosfohidrolasa. Cabe destacar que en todas las pruebas enzimáticas se mantiene la actividad 12, siendo ésta: Naftol AS BI fosfohidrolasa.

b) Electroforesis unidimensional en condiciones desnaturantes (SDS-PAGE).

Se hicieron dos electroforesis de las proteínas concentradas obtenidas del cultivo de *Cytophaga sp* en fase exponecial. La primera en gel al 12% obteniéndose sólo 2 bandas con PM de 63.09 y 54.95 KD. Luego se utilizó un gel al 15% y se corrieron muestras de distintos volúmenes 35,25 y 10ml, lo que equivale a 32.2, 23 y 9.2 mg de proteínas respectivamente, en cada corrida. Pudiendo distinguirse claramente 3 bandas correspondientes a los PM 99.6, 63.01 y 56.02 KD. (datos no mostrados)

Determinación de la Especificidad Alguicida del Sobrenadante de Cytophaga sp sobre el dinoflagelado Heterocapsa sp

No se observa efecto citolítico del sobrenadante *Cytophaga sp* sobre el dinoflagelado *Heterocapsa sp*. La población aumenta en ambas condiciones.

DISCUSIÓN

El objetivo de esta investigación fue determinar la existencia de un efecto alguicida por parte del sobrenadante del cultivo bacteriano de *Cytophaga sp* sobre el dinoflagelado *A. catenella*, de manera tal de poder ser utilizado en esquemas de manejo de control de la Marea Roja. Esto ya ha sido descrito por otros autores (Kim et al., 1998; Yoshinaga et al., 1999; Nagasaki et al., 2000), y actualmente hay variadas investigaciones en curso.

El efecto de la bacteria sobre la toxicidad de los dinoflagelados del género *A. catenella* en cultivo ha sido un tema controversial por décadas (Gallacher & Smith, 1999), centrándose sólo en las bacterias como tal y no en los compuesto(s) excretados por éstas. En esta investigación se encontró que compuesto(s) liberados por *Cytophaga sp* en contacto directo (sobrenadante completo) con cultivos de *A. catenella* si afectan en el crecimiento. Este sobrenadante del cultivo bacteriano poseería algún tipo de compuesto(s) que afectan negativamente el crecimiento de *A. Catenella*, produciéndose la lisis de gran parte de la población del cultivo. El SFD presentaba las siguientes actividades enzimáticas: Fosfatasa alcalina, Esterasa lipasa, Lipasa, Leucina arilamidasa, Fosfatasa ácida y Naftol-AS-BI fosfohidrolasa, éstas podrían estar participando en la actividad citolítica presente en el sobrenadante. Posterior a la precipitación de la mayor parte de las proteínas presentes en este sobrenadante, la actividad citolítica se redujo. Sin embargo la fracción de proteínas concentradas por precipitación con sulfato de amonio produjo también lisis celular, pese a perder las actividades enzimáticas esterase, lipasa, fosfatasa ácida y leucina arilamidasa; las que podrían corresponder a actividades propias de las proteínas precipitadas. La electroforesis reveló la presencia de 3 bandas que corresponderían a proteínas de PM 100, 63.09 y 54.95.

Se debe hacer mención a que, en el sobrenadante desproteinizado se siguió observando la actividad alguicida, lo que nos lleva a postular que, o bien habrían persistido proteínas en el, posterior a la precipitación de estas, o bien, que existiría otro factor, no proteico, involucrado en la actividad citolítica de *Cytophaga sp*.

Skerratt et al, 2002 postula que el mecanismo alguicida de las bacterias no es enzimático, ya que sometió un sobrenadante alcuicida a distintas temperaturas, encontrando que no desaparecía el efecto tóxico después de ser tratados con calor (hasta 120°C), sin embargo en nuestra investigación, pudimos determinar que si se sometía el sobrenadante de *Cytophaga sp* a ebullición a 110°C por 7 minutos, persistían las actividades enzimáticas esterase, lipasa, leucina arilamidasa, fosfatasa ácida y Naftol-AS-BI fosfohidrolasa.
Para usar las propiedades liticas relacionadas con *Cytophaga sp.* como posible método de control de Mareas Rojas es preciso determinar si su actividad alquicida es específica para el dinoflagelado *A. catenella*. Para esto, se enfrentó al dinoflagelado *Heterocapsa sp.* al SFD de *Cytophaga sp.* comprobándose que, al menos en este caso, el compuesto(s) litico carecen de efecto. Deben realizarse otros estudios que determinen de manera global la especificidad de *Cytophaga sp.* sobre *A. Catnella*, pues el que en nuestra investigación hayamos descartado a *Heterocapsa sp* no significa que todos los dinoflagelados no sean afectados por la acción lítica de *Cytophaga sp.*

En la actualidad ya ha quedado claro que las interacciones bacteria-fitoplancton son mucho más complejas de lo que se pensaba originalmente (e.g. Dantzer & Levin, 1997; Gallacher & Smith, 1999; Hold y col., 2001), y esto determina que múltiples investigaciones deberán realizarse antes de poder llegar a vislumbrar su uso como método de control de las FAN.

Este estudio es simplemente uno más entre ellos y esperamos pueda ser utilizado como paso inicial a futuras investigaciones las que puedan repetirlo y determinar su validez estadística.

Tabla 1: Actividades Enzimáticas extracelulares (exoenzimas) obtenidas del SFD de *Cytophaga sp.*

<table>
<thead>
<tr>
<th>ENZIMA</th>
<th>REACCIÓN</th>
<th>SFD Cytophaga sp COMPLETO</th>
<th>SFD Cytophaga sp DESPROTEINIZADO</th>
<th>SFD HIRVIDO</th>
<th>Proteínas Concentradas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fosfatasa alcalina</td>
<td>Violeta</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Esterasa</td>
<td>Violeta</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Esterasa lipasa</td>
<td>Violeta</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lipasa</td>
<td>Violeta</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leucina</td>
<td>Neutro</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>grilamidasa</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fosfatasa ácida</td>
<td>Violeta</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Halol AS</td>
<td>Acid.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>fosfodiesterasa</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Detección de las actividades enzimáticas presentes en cultivos de *Cytophaga sp.* Por medio del kit ApiZym (Biomerieux). Se analizó la actividad enzimática presente en el sobrenadante *Cytophaga sp.*

Gráfico 2: Caracterización del efecto alquicida indirecto del SFD de *Cytophaga sp.*

Evaluó la sobrevivencia del dinoflagelado en condiciones control en F/2, sobrenadante filtrado dializado (SFD) completo, SFD desproteínizado y proteínas concentradas, de manera de determinar dónde radica el factor alquicida de *Cytophaga sp.* CONOCER 1: 5ml *A. Catenella* + 3ml F/2, CONTROL 2: 3ml *A. Catenella* + 3ml sobrenadante completo. SOBRENADANTE DESPROTEINIZADO: 5ml *A. Catenella* + 3ml sobrenadante desproteínizado. CONCENTRADO DE PROTEINAS: 5ml *A. Catenella* + 3ml proteínas concentradas del sobrenadante de *Cytophaga sp.*. Se registraron los conteos a las 0, 24 y 48 hrs. en todos los grupos.
AGRADECIMIENTOS

Agradecemos a la Doctora Ana María Amaro del Departamento de Fisiología Celular, Universidad de Chile, a Daniel Carrasco y Sandra Ogalde por su colaboración y facilitación de laboratorio para la investigación. Financiado por FONDECYT.

BIBLIOGRAFÍA

